
AD-AIIA 570 MASSACHUSETTS INST 'OF TECH CAMBRIDGE DEPT OF ELECTRI -ETC F/G 12/1
ALGORITHMS FOR PROGRAM VERIFICATION.(U)
MAY 82 V R PRATT AFOSR-A0-0225

UNCLASSIFIED AFOSR.-TR-82-0645 NLm7hh~~

AFOSR.Tit 82 -06 4 5
MASSACHUSETTS INSTITUTE OF TECHNOLOGY AFOS. GRANT NUMBER 80-0225

May, 1982

Final Report

Algorithms for Program Verification

Principal Investigator: Vaughan R. Pratt

Reporting Period: July 1980 - June 1981

"\ Abstract

\4n the previous reporting period, July 1979 to June 1980. work was performed
on (1.) foundations for specifying automatic program verifiers [Prl,Pr3],
(A) decision methods for a large fragment of the basic logic of programs
[PrS], (ijr) implementation of a decision method for propositional dynamic
logic, and (vf) continued maintenance of MITVI [LP]. a program verifier
incorporating some of these ideas. -

< In the current (and final) reporting period, the research emphasis shifted from
the verification of sequential programs to that of dataflow programs. This
work has led to new insights into the correspondence between functions and
processes [Pr4.Pr7]. It has also stimulated work on a new approach to user
environments [Pr6]. And it has raised, though not answered, problems
concerning automated verification of dataflow programs.

DI 4.%1r I bu

I.-.

Ava,lt L 01 'r" '? ubi:rles

"tz, ---P (lmr on 1m t
.82 08 23 072

T"" ' I, T' .- , ': 4"" . .

*19

4.e C.

avv*

Research Objectives.

The overall objective of this project as originally conceived was to develop
algorithmic tools for program verification, starting from prior foundations,
developing whatever additional foundations were needed, and aiming ultimately
at concrete implementations. In the course of the research it
became evident that the emerging tools were equally applicable to other
aspects of programs besides their verification. The logical algorithms
developed for program verification by such workers as D. Oppen. J. Schwartz.
R. Shostak, and the P1, were all useful for the compilation and optimization
of programs. Such work is also likely to yield tools for the automatic
analysis of programs, e.g. worst-case and average-case complexity analyses.

It was accordingly decided that it was intellectually uneconomical to
continue to characterize the research as being purely for verification, and a
broader objective was set, for which an appropriate title might be "Logical
Algorithms for Program Analysis." The sense of the word "analysis" here is
meant to embrace analyses yielding a wide variety of types of information,
not by any means confined to properties expressing the correctness of the
program.

Status of the research effort.

The two most important accomplishments during the reporting period were the
development of a formal semantics for distributed computation, and the
design of a programming environment based on that semantics. Both
theoretical and implementation efforts are presently ongoing, well
beyond the funding period of this grant (but presently unfunded as the PI of
this grant is not yet eligible to be a P1 at his new employing institution,
Stanford).

Dataflow Semantics

In the previous report we outlined work then just beginning on dataflow
semantics. This work is now well along, and has yielded a POPL paper
[Pr7] and a presentation at a DARPA conference [Pr6].

Our theory closely parallels the ordered-pair theory of functions. Starting
from a set P of ports and a set D of data values, we define a process event
to be a port-datum pair, a process trace to be a partially ordered multiset
of events, and a process (or process behavior) to be a set of traces. (The
conventional notion of a function f could be defined in this way if we
restricted the set P to be (1,0) (one input port I and one output port 0),
and required traces to be a totally ordered pair of events ((Ix).(O,f(x)),
that is, an input event in which datum x arrives at port I and an output
event in which datum f(x) leaves port 0.)

We can define the semantics of networks of processes in an analogous fashion.
substituting interprocess connections for ports to yield otherwise identical
definitions for the notions of network event (a connection-datum pair),
network trace (a partially ordered multiset of network events), and network
behavior (a set of network traces).

Now define the restriction of a network trace to a process of the network to
be the result of replacing connections in events of that trace by
corresponding ports of that process to yield a process trace. We say that a
network realizes a network process when for every process p of the network and
every trace t of the network behavior, the restriction of t to p is a process
trace of p.

By identifying certain processes of a network as its inputs and outputs, we
can define the process realized by a network to be the restriction of the

ftA

network process realized by the network to its input and output-processes.
This passage from network behavior to process behavior is called abstraction.

We may now introduce the notion of a net-definable operation on processes.
An n-ary net schema is a network of n uninterpreted processes numbered from 1
to n. Such a schema defines an n-ary operation mapping an n-tuple of processes
to a process, namely to the process obtained by abstraction when the n-tuple
of processes instantiates the n uninterpreted processes of the schema.

A net algebra is a set of processes closed under all net-definable operations.

Net theory consists of all valid equations between pairs of terms each
involving net-definable operations along with variables ranging over
processes.

In [Pr7] we raised three central open questions about net algebra and net
theory. First, is there a finite basis for net algebra? That is, can all
terms of net algebra be expressed using only a fixed finite set of
net-definable operations? Second, what is the computational complexity of
net theory? (Is it recursive, decidable in exponential time, etc?) Third, is
net theory finitely axiomatizable?

The first question is important in formulating the remaining questions. In
particular, the lack of a finite basis makes it harder, though not impossible.
to formulate finite axiomatizability.

The second question is of central importance in any development of algorithms
for reasoning about dataflow programs. If the theory has reasonable
computational complexity then it can be used directly in logics of concurrent
programs. If not, then alternative theories must be sought.

One might consider the third question to be of even greater importance for a
theory in which proofs may be carried out. However in our opinion finite
axiomatizability of a theory is too dependent on the form of the language to
be a computationally interesting issue, and is mainly of academic interest.

These questions about parallel processes have their analogues in the
corresponding questions for sequential processes. An adequate model for
sequential processes, at this level of abstraction, is provided by finite
automata, whose graphs supply the sequential analogue of parallel networks.
Kleene (1967) in effect showed that three graphs supplied a complete basis
for all graph-definable operations on languages. There is an obvious
exponential-time decision procedure for equality between terms in such graphs:
translate each side to its minimal deterministic automaton and then see if the
same automaton is arrived at from each side. Redko (1967) showed that the
equational theory of regular expressions is not finitely axiomatizable. (This
does. however, raise the question as to whether for every finite basis the
corresponding theory is not finitely axiomatizable; to the best of our
knowledge this question has not even been raised, let alone answered, to date.)

Processes as a Basis for a Programming Language

In the course of developing a semantics for processes the possibility emerged
of using processes as the conceptual basis of a programming language,
paralleling Lisp's use of (recursively defined) functions for its conceptual
basis, and Hewitt's (HB] use of "actors" for parallel processes.

In Hewitt's approach., "everything" is an actor. This "monotheism, is carried
over to our process-based language, in.which all data types have a common
root, the process. Unlike Hewitt's actors, but like Lisp's functions (at
least in theory), our processos are extensional in the sense that two
processes with the same behavior are by definition the same process.

* £ ~ ..

The extensionality property leads to some substantial simplifications of both
the foundations and the implementation. A logic of processes can take the
form of an algebra of processes, in which one asserts equalities between
expressions denoting processes. Such an algebra is both natural and easy to
develop foundations for. It is natural because it is the style of logic one
encounters earliest in one's mathematical education, and it is suited to
foundational work because there are many metatheoretical tools available from
universal algebra for the study of equational theories of classes of algebras.

On the implementation side, extensionality eliminates the need for lazy
evaluation as a semantic concept in its own right. In its place one may talk
explicitly about say the set of even numbers or the set of primes. In this
model lazy evaluation is just one of many possible implementations, and not
generally a very good one at that.

This work will be submitted to POPL 83 as [Pr8].

Graphical Representation of Distributed Computation

Just as Lisp is syntax-free, or as Lisp's inventor McCarthy puts it, uses
abstract syntax, so is our process language independent of syntax. This is
not however to endorse the lack of syntax in programming languages. We have
recently been giving some thought as to the most appropriate syntax for the
above programming language.

Our present approach is to use all three dimensions for both input
and output in all user interaction with the language. Spatial metaphors are
used liberally to represent various concepts. Perspective projection is
relied on to organize very large data bases: by keeping most data far away and
only bringing currently interesting data near, one can keep an entire data
base in view and yet have an uncluttered screen. Hierarchies are represented
by physically grouping siblings together and permitting them to be manipulated
as a unit. A list is represented as a linear arrangement of its elements. An
infinite list may be displayed in its entirety on a screen with the help of
perspective by having it disappear at a point at infinity, with most elements
being vanishingly small. Dataflow programs are represented as physical
networks through which data flows; even the flow of data itself can be
represented naturally, in a way ideal for debugging programs, even in the
special case where the programs are serial.

To manipulate this data, it is proposed to extend'the traditional one-handed
two-dimensional mouse to two hands, three dimensions, with grasping capability.
The user waves the thumb and forefinger of each hand about in front of or
within some sensing device (TV camera, sonar rangefinder, prosthetic device,
etc.) and an image of these, modelled as two pairs of tweezers, appears on
the screen. Each pair has 7 degrees of freedom, consisting of 3 for position,
3 for attitude, and 1 for grasping (thumb-forefinger separation).

A wide range of natural conventions is used to permit the user to communicate
with the displayed data. Many operations on data are naturally modelled with
physical movements of the tweezers. A datum may be selected by grasping it
with one pair of tweezers. It may be dismantled by being pulled apart while
grasping with both pairs. Two data may be assembled into a unit by grasping
both and bringing them together. Menu items may take the form of buttons to
be pushed. Analog quantities may be controlled as levers to be moved to and
fro. Hierarchies may be searched by pulling data closer and later pushing it
away. This only scratches the surface of the possible natural operations
performable with tweezers.

This work is still in a very preliminary stage. We are anxious to find
appropriate sources of support for a major thrust in this direction.

References

[BA] Brock, J.D. and W.B. Ackerman, An Anomaly in the Specifications of
Nondeterminate Packet Systems, MIT LCS Computation Structures Group Note 33-1,
Jan. 4, 1978.

[HB] Hewitt, C. and H.G. Baker, Laws for Communicating Parallel Processes,
IFIP 77, 987-992; North-Holland, Amsterdam, 1977.

[KM] Kahn, G., and D. MacQueen, Coroutines and Networks of Parallel
Processes, IFIP 77, 993-998, North-Holland, Amsterdam, 1977."

[Mill Milner, R., Flowgraphs and Flow Algebras, JACM, 26, 4. 794-818,
Oct. 1979.

[Opp] Oppen, D.C., Simplification by Cooperating Decision Procedures, ACM
Trans. on Programming Languages and Systems, 2, 1, 1979.

[Prl] Pratt, V.R., Axioms or Algorithms, Proc. 6th Symposium on Mathematical
Foundations of Computer Science, Olomouc, Czech.. Sept.. 1979.

[Pr2] Pratt, V.R., Models of Program Logics, Proc. 20th IEEE Conference on
Foundations of Computer Science, San Juan, PR, Oct. 1979.

[Pr3] Pratt, V.R.. On Specifying Verifiers, Proc. 7th Ann. ACM Symp. on

Principles of Programming Languages, Las Vegas, Jan. 1980.

[Pr4] Pratt, V.R., A Conceptually Economical Programming Language Based on
Dataflow, unpublished manuscript, August 1980.

[Pr5] Pratt, V.R., Program Logic Without Binding is Decidable, Proc. 8th
Ann. ACM Symp. on Principles of Programming Languages, Williamsburg. VA.
Jan. 1981.

[Pr6] Pratt, V.R., Graphical Models of Distributed Computing, DARPA
Conference on Graphical Representation of Software, Key West, Dec. 1981.

[Pr7] Pratt, V.R., On the Composition of Processes, Proc. 9th Ann. ACM Symp.
on Principles of Programming Languages, Albuquerque. NM, Jan. 1982.

[Pr8] Pratt, V.R., A Dataflow Programming Language Based on Processes, to be.
submitted to the 10th Ann. ACM Symp. on Principles of Programming Languages,
to be held Jan. 1983.

Publications

Pratt, V.R., Axioms or Algorithms, Proc. 8th Symposium on Mathematical

Foundations of Computer Science, Olomouc, Czech.. Sept., 1979.

Pratt, V.R., On Specifying Verifiers, Proc. 7th Ann. ACM Symp. on Principles
of Programming Languages, Las Vegas, Jan. 1980.

Pratt, V.R.. Modelling as a Paradigm for Verification, ACM SIGSOFT Software
Engineering Notes, June, 1980. (Presented at VERKshop, SRI, April, 1980.)

Pratt, V.R., Program Logic Without Binding is Decidable, Proc. 8th Ann. ACM
Symp. on Principles of Programming Languages, Williamsburg, VA, Jan. 1981.

Pratt, V.R., Graphical Models of Distributed Computing. DARPA
Conference on Graphical Representation of Software, Key West, Dec. 1981.

Pratt, V.R., On the Composition of Processes, Proc. 9th Ann. ACM Symp.
on Principles of Programing Languages, Albuquerque, N, Jan. 1982.

-,t

Professional Personnel

Johann Makowsky, Ph.D. awarded 1974.

Derek C. Oppen, Ph.D. awarded 1974.

Vaughan R. Pratt (principal investigator), Ph.D. awarded 1972.

Michael Sipser,.Ph.D. awarded 1979.

1:1

II

IYL.IFIED
SECURITY CLASSIFICATION OF THIS5 PAGE (ften atos.nowe4 ________________

READ INsTnucTinIsSREPORT DOCUMENTATION PAGE BEFORE COMPLETIG FORM
I. AIPOT NUBERF. -0VTACCESSIOl No: S.REPINTS CATALOG NUMBERt

AFOSR.TA 82a- 0 645 51VY
4. TITLE (Si S~o S. TYPE or REPORT a PERIOD COVERED

ALGORITHMS FOR PROGRAM VERIFICATION (7Final, 1 Jul 80-30 Jun 81
a. PERFORMING ORO. REPORT NUMBER

1AUTNORWq S. CONTRACT OR GRANT NuNmSER-f)

Vaughan R. Pratt AFOSR-80-0225

S. _PERFORtMING ORGANIZATION NAM4E AND ADDRESS 10. EiiGANELEMEN4T. PROJECT. TASK
AREA a WORK UNIT NUMBERS

Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, PE61lO2F; 2304/A2
Cambridge MA 02139, J

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Directorate of Mathematical & Information Sciences May 1982
Air Force Office of Scientific Research IS. NUMBER Of PAGES

Bolln2 FB D 2O3~'6
i*. MONITORING AGECY NME ADDRESSQIl Oilm frm Cengtorn ffinS011) IS. SECURITY CLASS. (of tis "Pori)

UNCLASSIFIED

IS. g o"ASIPICATION/ DOWNGRADING

1S. DISTRIBUTION STATEMENT (of this R@pwQt

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of DI. abtract .etod in, Block ". it 411110.nt lurn RSPWr)

IS. SUPPLEMENTARY NOTES

19. It Y WORDS (01IO.E OR MIPF9 S.,,. if~ at090M ae.~nd 110RM 6dhFp blak -01uM)

85. ABSTRACT (Cowho nD m .'rs. aide H Ifee 006 SiE 1110F block MfEOWi)

In the previous reporting period, 1 Jul 79-30 Jun 80, work was performed on (i)
foundations for specifying automatic program verifiers (Pri, Pr3], (ii) decision
methods for a large fragment of the basic logic of programs [Pr5], (iii) imple-
mentation of a decision method for propositional dynamic logic, and (iv)
continued maintenance of MITV1 ELP], a program verifier incorporating'some of
these ideas.

I (CONTINUED)

JAM y n 10 ITIOW OF I NOV 655 S OLETX ELSSF

82 0823 0V2
.-

.NO
W.

.

I I.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGWIMM DEIS ,lms.

ITEM #20, CONTINUED:

In the current (and final) reporting period, the research emphasis shifted from

the verification of sequential programs to that of dataflow programs. This work

has led to new insights into the correspondence between functions and processes

[Pr4, Pr7]. It has also stimulated work on a new approach to user environments
[Pr6]. And it has raised, though not answered, problems concerning automated
verification of dataflow programs.

UNCLASSIFIED

